0% Complete
صفحه اصلی
/
نهمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Detection of Defective Products in Injection Molding Process Using YOLO-NAS
نویسندگان :
Mohammadreza Asadi
1
Seyedeh Sogand Hashemi
2
Mohammad Taghi Sadeghi
3
1- Yazd University
2- Yazd University
3- Yazd University
کلمات کلیدی :
Deep Learning،Defect Detection،Injection Molding،Machine Vision،YOLO
چکیده :
Injection molding is an important manufacturing process with applications spanning various industries. Modern industry demands quality, efficiency, and environmental sustainability. The advanced injection molding inspection systems (IMIS) provide these requirements by real-time monitoring systems executed based on Industry 4.0 technologies such as IoT, machine vision, and artificial intelligence. This paper introduces an IMIS using YOLO-NAS models as one of the state-of-the-art deep neural networks for real-time object detection, to recognize both complete and defective injected products. Upon defective products detection, the system automatically stops the injection process, ensuring operational safety and product quality. Our evaluation of implemented models based on YOLO-NAS variants (i.e. small, medium, large) for injection molding inspection reveals minor performance differences. The results declare that YOLO-NAS models have a reliable performance on defective products detection in an injection molding machine.
لیست مقالات
لیست مقالات بایگانی شده
Sensor-Fault-Tolerant Controller for a Flexible-link Manipulator with Output Constraint
Mona Raoufi - Hadi Delavari
Fault diagnosis of photovoltaic modules using deep neural networks-VGG16
Samaneh Azimi - Mohammad Manthouri
H∞ Robust Control Design for Three-Element Industrial Boiler Supervisory System
Narges Ahooghalandari - Reza Shadi - Ahmad Fakharian
Enhancing Cyber Attack Detection in CPS Using a Semi-Supervised Approach to Determine Parameters for DBSCAN Algorithm
Hamid Navazani - Abolghasem Daeichian - AmirHossein Abolmasoumi
Consensus Tracking of Multi-Agent Systems in The Presence of Byzantine Agents Using Model Predictive Control
Mohammad amin Rezaei - Peyman Bagheri - Farzad Hashem zadeh
Survey of Multi-Agent Reinforcement Learning to Solve Inverse Kinematic Problems of Redundant Robotic Manipulators
Parvin Emami - Amir Rikhtehgar Ghiasi - Amir Aminzadeh Ghavifekr
Experimental identification of dynamic friction parameters with the intention of precision optimal control of model based robotic systems
Naeim Yousefi Lademakhi - Paria Moradi - Moharram Habibnejad Korayem
On The Dynamic Calibration and Trajectory Control of ARASH:ASiST
Ali Hassani - M.R. Dindarloo - R. Khorrambakht - A. Bataleblu - R. Heidari - M. Motaharifar - S. F. Mohammadi - H. D. Taghirad
Robust State-Feedback Local Voltage Control for Islanded Uncertain DC Microgrids Using LPV Modeling
Mohammad Reza Asadi - Mohammad Hossein Kazemi
Improvement of Simultaneous Localization and Mapping Based on Extended Kalman Filter Using Iterative Closest Point Algorithm
Hasan Enami Eraghi - Mohammad Reza Taban - Sayed Farzad Bahreinian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.8