0% Complete
صفحه اصلی
/
نهمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Blood Pressure Estimation through Photoplethysmography and Machine Learning Models
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- دانشگاه تهران
4- Kettering University
کلمات کلیدی :
blood pressure،feature extraction،machine learning،photoplethysmograph،regression
چکیده :
Blood pressure (BP) is a critical health factor, the fluctuations of which can have profound implications for an individual's well-being. Traditional methods of measuring BP, such as cuff-based and invasive devices, are not only uncomfortable but also unable to provide continuous monitoring. In response to this need, we propose a cuffless, continuous, and non-invasive BP measurement system utilizing photoplethysmograph (PPG) signals and machine learning (ML) models. PPG, an optical volumetric measurement technique, can detect changes in blood volume within the vascular bed of tissue. In this study, PPG signals obtained from diverse individuals underwent preprocessing and feature extraction. Subsequently, feature selection technique were employed to identify suitable features. These selected features were then used to train and evaluate ML models. Ultimately, we identified optimal regression models for independent estimation of systolic blood pressure (SBP) and diastolic blood pressure (DBP). Our results indicate that the random forest (RF) model, in combination with the SelectFromModel feature selection method, outperformed other models. This model yielded significant outcomes, achieving a root mean square error (RMSE) of 10.06 for SBP and 6.61 for DBP, highlighting its superior performance in BP estimation.
لیست مقالات
لیست مقالات بایگانی شده
Adaptive Optimal Control of Chaotic System Using Backstepping Neural Network Concept
Mohammad Sarbaz - MohammadReza Soltanian - Mohammad Manthouri - Iman Zamani
Sustainable Energy Management in Multi-Unite Cooling Systems With Fuzzy Logic and Adaptive Nonlinear Control
Mohammad Soofi - Nilofar Maleki - Hadi Delavari - Pouria Maleki
Average onsensus of heterogeneous discrete-time linear multi-agent systems with balanced directed networks
Mohammad Hadi Rezaei - Ali Abooee
Forecasting the Condition Severity of COVID-19 in Terms of Prevalence in Iran
Morteza Hajji - Ahmad Ali Rafiee - Ali Akbar Safavi - Mahmoud Farhang
OPC UA Over TSN (Time Sensitive Network) for Vertical and Machine to Machine Communication
Abdollah Moshiri - Ali Mohammad Afshin Hemmatyar
بکارگیری تکنیک کنترل بهینه جهت طراحی مسیر حرکت بر خط برای هدایت خودرو خودران الکتریکی
محمد امین قماشی - رضا کاظمی
Fault diagnosis of photovoltaic modules using deep neural networks-VGG16
Samaneh Azimi - Mohammad Manthouri
Dissipativity-based Stability Analysis of Power Networks with Uncertain Interconnections
Narges Rezaei Kookhdan - Hamid Reza Koofigar
Adaptive Fractional Sliding Mode Controller for Controlling Airway pressure in an Artificial Ventilation System
Amir Veisi - Hamoun Maleki - Hadi Delavari
تشخیص حملات سایبری مخفی در ریزشبکههای جریان مستقیم مشارکتی براساس مدل توزیع شده
سید محمد حسینی رستمی - مهدی پورقلی - هادی اشعریون
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.2