0% Complete
صفحه اصلی
/
هشتمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Using Deep Learning Network for Fault Detection in UAV
نویسندگان :
Armin Mahdi Erfanian
1
Amin Ramezani
2
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
کلمات کلیدی :
UAV, Quadrotor, Fault detection, BLSTM, Deep learning.
چکیده :
Unmanned aerial vehicles (UAV), especially quadrotors, have received much attention in recent years. The most important challenge in a drone system is fault detection. therefore, in this article, we used the Long short-term memory algorithm (LSTM) to detect faults. in other words we were able to detect the actuator fault of quadrotor using LSTM algorithm, used in the field of deep learning. In this research, we first simulated the quadrotor model using PID controller and then extracted the data and through this we were able to train the network and eventually detect the fault by collecting data from various state variables and inputs at different frequencies and amplitudes. The simulation results show this method can be effective in detecting faults in quadrotor and its accuracy reaches 99%.
لیست مقالات
لیست مقالات بایگانی شده
Design and construction of a wheel-leg robot and testing the robot for different motion scenarios
Mohammadreza Vazifeh ardalani - Amin Toorani - Moharam Habibnejad Korayem
Survey of Multi-Agent Reinforcement Learning to Solve Inverse Kinematic Problems of Redundant Robotic Manipulators
Parvin Emami - Amir Rikhtehgar Ghiasi - Amir Aminzadeh Ghavifekr
Enhancing Resiliency in Standalone Microgrid Control System Using Consensus Algorithm Integrated with Multivariable Filter
Mojtaba Ahmadi - Mohammad Hossein Mousavi - Hassan Moradi
توسعه شبیهساز برای فرایندهای اسکن سهبعدی لیزری
محمد اخلاقی - رضا محمدنژاد - محمد شهبازی
شبیه سازی بازوی 5urfd در متلب و v-rep
رضا جلالی رومی - علیرضا نقی پور - فراز جباری ایلخچی
Adaptive Control of Spur Gear Systems via Proximal Policy Optimization and Attention-Based Learning
Mohammad Ali Labbaf Khaniki - Marzieh Mirzaeibonehkhater - Amirhossein Samii - Mohammad Manthouri
کنترل دوشاخگی و آشوب در مبدل بوست کنترل کننده مد جریان
نجمه زمانی
Wearable sensing smart solutions for workers' remote control in health-risk activities
Paolo Visconti - Roberto De Fazio - Ramiro Velazquez - Bassam Al-Naami - Amir Aminzadeh Ghavifekr
Tracking Blood Glucose Concentration of Type 1 Diabetic Patients Using Reinforcement Learning
Peyman Vafadoost Sabzevar - Hamid Sadrian - Ahmad Hajipour
UAV Lateral Near-optimal Control Based on Model Reduction
Saman Zaker - Hassan Zarabadipour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.2