0% Complete
صفحه اصلی
/
هشتمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Synthetic to Real Framework based on Convolutional Multi-Head Attention and Hybrid Domain Alignment
نویسندگان :
Mohammadreza Ghorvei
1
Mohammadreza Kavianpour
2
Mohammad TH Beheshti
3
Amin Ramezani
4
1- Tarbiat Modares University
2- Tarbiat Modares University
3- Tarbiat Modares University
4- Tarbiat Modares University
کلمات کلیدی :
Unsupervised Fault diagnosis, multi-head attention, hybrid domain alignment, synthetic data
چکیده :
Unsupervised Domain adaptation (UDA) has performed outstandingly in unsupervised fault diagnosis. However, its performance is highly related to two significant factors: Firstly, proposed UDA methods should alleviate the global and local distribution gap to match all distributions in the source and target domain precisely. On the country, Most distance-based DA methods assume global domain adaptation or concentrate only on local aligning distributions. Secondly, the generalization of most proposed unsupervised fault diagnosis methods relies on labeled faulty data collected from sensors. Contrarily, collected data in real-world scenarios are mostly unlabeled, which considerably declines the model’s generalization. We proposed a synthetic to the real framework to overcome two significant challenges. A convolution multi-head attention network based on hybrid multi-layer domain adaptation (CMHA-HMLDA) is conducted to simultaneously align global and local distributions. It also alleviates the gap between real and synthetic data more accurately to maintain a robust data-driven model for bearing fault diagnosis. Furthermore, our proposed method is reliable in real scenarios because it employs labeled synthetic data in the source domain to transfer knowledge into unlabeled real data in the target domain. To show the supervisory of our proposed method in diagnosing unlabeled real health states, we validated it with a synthetic dataset made from bearing benchmark Case Western Reserve University(CWRU) dataset and compared it with recently published UDA methods. Consequently, we achieved the state-of-art-results that show our proposed method is capable of realizing unlabeled real bearing faults from synthetic data, and it is practical in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
Fuzzy Logic-Based Uncertainty Analysis of a Sheet Pile Soil Retaining Wall
Negin Sarshar - Ali Derakhshani
طراحی کنترلکننده حالت لغزشی تطبیقی زمان محدود مرتبه کسری برای بهبود پایداری توربینهای بادی پایه کششی شناور فراساحلی تحت اغتشاشات وزش باد و امواج دریا
متین جزءاسلامی - مائده نفیسیفر - محمدرضا عسکری سپستانکی - ابوالفضل جلیلوند
Estimation of time-varying and state-dependent fault using adaptive observer for a class of discrete- time systems
Sima Taghizadeh - Reza Mahboobi Esfanjani
Experimental identification of dynamic friction parameters with the intention of precision optimal control of model based robotic systems
Naeim Yousefi Lademakhi - Paria Moradi - Moharram Habibnejad Korayem
Robust Inverse Dynamics Control of the Remotely Operated Underwater Vehicle Manipulator
Mahdi Armoon - Marzie Lafouti - Babak Tavassoli - .Hamid D Taghirad
Model Predictive Control of Three-Phase Four-Leg MMC-Based STATCOM Under Nonlinear Load Phase Switching Conditions
Milad Samady Shadlu
Survey of Multi-Agent Reinforcement Learning to Solve Inverse Kinematic Problems of Redundant Robotic Manipulators
Parvin Emami - Amir Rikhtehgar Ghiasi - Amir Aminzadeh Ghavifekr
Sensor-Fault-Tolerant Controller for a Flexible-link Manipulator with Output Constraint
Mona Raoufi - Hadi Delavari
بررسی تاثیر پارامترهای مکانیکی و کنترلی در افزایش سرعت چیدمان باتری در دستگاه ربات کارتزین
محمدهادی کلائی - علی رجبی - جواد انفرادی
Assessing Pediatric Sleep Apnea-Hypopnea Severity: Analyzing SpO2 Signals Spectrograms with Inception V3 Model
Erfan Mortazavi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.2