0% Complete
صفحه اصلی
/
هشتمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Synthetic to Real Framework based on Convolutional Multi-Head Attention and Hybrid Domain Alignment
نویسندگان :
Mohammadreza Ghorvei
1
Mohammadreza Kavianpour
2
Mohammad TH Beheshti
3
Amin Ramezani
4
1- Tarbiat Modares University
2- Tarbiat Modares University
3- Tarbiat Modares University
4- Tarbiat Modares University
کلمات کلیدی :
Unsupervised Fault diagnosis, multi-head attention, hybrid domain alignment, synthetic data
چکیده :
Unsupervised Domain adaptation (UDA) has performed outstandingly in unsupervised fault diagnosis. However, its performance is highly related to two significant factors: Firstly, proposed UDA methods should alleviate the global and local distribution gap to match all distributions in the source and target domain precisely. On the country, Most distance-based DA methods assume global domain adaptation or concentrate only on local aligning distributions. Secondly, the generalization of most proposed unsupervised fault diagnosis methods relies on labeled faulty data collected from sensors. Contrarily, collected data in real-world scenarios are mostly unlabeled, which considerably declines the model’s generalization. We proposed a synthetic to the real framework to overcome two significant challenges. A convolution multi-head attention network based on hybrid multi-layer domain adaptation (CMHA-HMLDA) is conducted to simultaneously align global and local distributions. It also alleviates the gap between real and synthetic data more accurately to maintain a robust data-driven model for bearing fault diagnosis. Furthermore, our proposed method is reliable in real scenarios because it employs labeled synthetic data in the source domain to transfer knowledge into unlabeled real data in the target domain. To show the supervisory of our proposed method in diagnosing unlabeled real health states, we validated it with a synthetic dataset made from bearing benchmark Case Western Reserve University(CWRU) dataset and compared it with recently published UDA methods. Consequently, we achieved the state-of-art-results that show our proposed method is capable of realizing unlabeled real bearing faults from synthetic data, and it is practical in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
Frequency Regulation Improvement in AC Microgrids: A Fuzzy-Based Extended Virtual Synchronous Generator Control
Arman Jafari - Sharara Rehimi - Hassan Bevrani
Fault diagnosis of photovoltaic modules using deep neural networks-VGG16
Samaneh Azimi - Mohammad Manthouri
طراحی و ساخت دستگاه جداکننده با استفاده از مکانیزم مرکب و با رویکرد اتوماسیون سازی خطوط تولید
محمدرضا هاشمی - محمدهادی کلائی - علی رجبی
کنترل تطبیقی سیستم چندعاملی غیرخطی با نامعینی پارامتری و تاخیر تغییرپذیر با زمان نامعلوم
نجمه زمانی - جواد عسگری - مرضیه کمالی
Using Deep Learning Network for Fault Detection in UAV
Armin Mahdi Erfanian - Amin Ramezani
طراحی سیستم کنترل ضد نوسانات بار در جرثقیل های محوطه ایی کانتینری بندری از نوع چرخ لاستیکی (RTG) با روش فازی TS با وجود اغتشاش
رضا روستائی - علی معرفیان پور
طراحی کنترل کننده مد لغزشی ترمینال غیرتکین فرا پیچشی مبتنی بر رویتگر اغتشاش برای ربات توانبخشی پایین تنه
سید محسن حسینی - هدی مودی - مجتبی حکیمی مقدم
A Novel Cyber-Secure Algorithm in Cooperative Vehicles Platoon
Abolfazl Saadati Moghadam - Mohammad Haeri
Rejection of Sinusoidal Disturbance of Unknown Frequency in Linear Systems with Unknown Input Delay
ٍٍEhsan Shahmoradi - Mohsen Mojiri
A new robust control for mobile robots with differential wheels:output- and state- dependent Riccati equation approach
Neda Nasiri - Ahmad Fakharian - Mohammad Bagher Menhaj
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.5