0% Complete
صفحه اصلی
/
هشتمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Synthetic to Real Framework based on Convolutional Multi-Head Attention and Hybrid Domain Alignment
نویسندگان :
Mohammadreza Ghorvei
1
Mohammadreza Kavianpour
2
Mohammad TH Beheshti
3
Amin Ramezani
4
1- Tarbiat Modares University
2- Tarbiat Modares University
3- Tarbiat Modares University
4- Tarbiat Modares University
کلمات کلیدی :
Unsupervised Fault diagnosis, multi-head attention, hybrid domain alignment, synthetic data
چکیده :
Unsupervised Domain adaptation (UDA) has performed outstandingly in unsupervised fault diagnosis. However, its performance is highly related to two significant factors: Firstly, proposed UDA methods should alleviate the global and local distribution gap to match all distributions in the source and target domain precisely. On the country, Most distance-based DA methods assume global domain adaptation or concentrate only on local aligning distributions. Secondly, the generalization of most proposed unsupervised fault diagnosis methods relies on labeled faulty data collected from sensors. Contrarily, collected data in real-world scenarios are mostly unlabeled, which considerably declines the model’s generalization. We proposed a synthetic to the real framework to overcome two significant challenges. A convolution multi-head attention network based on hybrid multi-layer domain adaptation (CMHA-HMLDA) is conducted to simultaneously align global and local distributions. It also alleviates the gap between real and synthetic data more accurately to maintain a robust data-driven model for bearing fault diagnosis. Furthermore, our proposed method is reliable in real scenarios because it employs labeled synthetic data in the source domain to transfer knowledge into unlabeled real data in the target domain. To show the supervisory of our proposed method in diagnosing unlabeled real health states, we validated it with a synthetic dataset made from bearing benchmark Case Western Reserve University(CWRU) dataset and compared it with recently published UDA methods. Consequently, we achieved the state-of-art-results that show our proposed method is capable of realizing unlabeled real bearing faults from synthetic data, and it is practical in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
Cloud-Based Model Predictive Control for Consensus Problem of Controlled Automated Vehicles
Ali Karami Ghanavati - Mohammad Shakerpour - Ali Akbar Safavi - Nader Meskin
Improvement of Simultaneous Localization and Mapping Based on Extended Kalman Filter Using Iterative Closest Point Algorithm
Hasan Enami Eraghi - Mohammad Reza Taban - Sayed Farzad Bahreinian
Adaptive Optimal Control of Chaotic System Using Backstepping Neural Network Concept
Mohammad Sarbaz - MohammadReza Soltanian - Mohammad Manthouri - Iman Zamani
Detection of Defective Products in Injection Molding Process Using YOLO-NAS
Mohammadreza Asadi - Seyedeh Sogand Hashemi - Mohammad Taghi Sadeghi
Implementing Engineering Education Based on Posing a Riddle in Field of Instrumentation and Artificial Intelligence
Ali Akbar Yaghoubi - Parham Karimi - Elahe Moradi - Roghayeh Gavagsaz-Ghoachani
طراحی کنترلکننده حالت لغزشی تطبیقی زمان محدود مرتبه کسری برای بهبود پایداری توربینهای بادی پایه کششی شناور فراساحلی تحت اغتشاشات وزش باد و امواج دریا
متین جزءاسلامی - مائده نفیسیفر - محمدرضا عسکری سپستانکی - ابوالفضل جلیلوند
طراحی سیستم کنترل ضد نوسانات بار در جرثقیل های محوطه ایی کانتینری بندری از نوع چرخ لاستیکی (RTG) با روش فازی TS با وجود اغتشاش
رضا روستائی - علی معرفیان پور
Average onsensus of heterogeneous discrete-time linear multi-agent systems with balanced directed networks
Mohammad Hadi Rezaei - Ali Abooee
Decision Making for Autonomous Vehicles' Strategy in Triple-Lane Roundabout Intersections
Shadi Samizadeh - Amirhossein Nikoofard - Hossein Yektamoghadam
Attention and Autoencoder Hybrid Model for Unsupervised Online Anomaly Detection
Seyed Amirhossein Najafi - Mohammad Hassan Asemani - Peyman Setoodeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.2