0% Complete
صفحه اصلی
/
هشتمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Experimental identification of dynamic friction parameters with the intention of precision optimal control of model based robotic systems
نویسندگان :
Naeim Yousefi Lademakhi
1
Paria Moradi
2
Moharram Habibnejad Korayem
3
1- دانشگاه علم و صنعت ایران
2- دانشگاه علم و صنعت ایران
3- دانشگاه علم و صنعت ایران
کلمات کلیدی :
Friction identification, Least-square, Recursive least-square, State-dependent Riccati equation, robot manipulator
چکیده :
In this paper, the difference in the position and the velocity of input and output angles is considered as friction and, its value is estimated using the methods of least-squares error identification with two direct and recursive approaches. The selected techniques, considering simplicity and reduction of computational volume and high execution speed, have a good performance in determining the parameters of friction model, and as a result, achieve a relatively accurate model close to the actual model of system. Then, the SDRE approach is used as a nonlinear optimal control method. The suggested approach is simulated for a two degrees of freedom mechanical arm with assuming a friction model. To verify the performance of identification algorithms, the Experimental tests have been implemented on a single mechanical arm. By satisfactorily identifying the friction parameters and compensating it by the SDRE controller, the final error of End-effector is reduced.
لیست مقالات
لیست مقالات بایگانی شده
A New Fuzzy Logic Based Learning Rate Scheduling Method for Crop Classification With Convolutional Neural Network
Mohammad Hoseinzadeh - Javad Khoramdel - Yasamin Borhani - Esmaeil Najafi
Frequency Regulation Improvement in AC Microgrids: A Fuzzy-Based Extended Virtual Synchronous Generator Control
Arman Jafari - Sharara Rehimi - Hassan Bevrani
Quantum Technology & Quantum Neural Networks in Smart Grids Control: Premier Perspectives
Ashkan Safari - Amir Ghavifekr
Safe Controller for Uncertain Nonlinear Systems using Model-based Reinforcement Learning
Sajjad Rashidian - Khalil Alipour
مطالعه کنترلپذیری فرآیند جداسازی مخلوط سه جزیی تتراهیدروفوران-متانول-آب به روشهای تقطیر استخراجی متداول و یکپارچه سازی حرارتی
رضا اسلاملوئیان - ساغر معتمدی
Continuous Wavelet Transformation and VGG16 Deep Neural Network for Stress Classification in PPG Signals
Yasin Hasanpoor - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
Survey of Multi-Agent Reinforcement Learning to Solve Inverse Kinematic Problems of Redundant Robotic Manipulators
Parvin Emami - Amir Rikhtehgar Ghiasi - Amir Aminzadeh Ghavifekr
Adaptive Neural Command Filtered Backstepping Control of Uncertain Nonlinear Systems Subject to Bouc-Wen Hysteresis Input
Maryam Shahriari-kahkeshi
Adaptive Control of Spur Gear Systems via Proximal Policy Optimization and Attention-Based Learning
Mohammad Ali Labbaf Khaniki - Marzieh Mirzaeibonehkhater - Amirhossein Samii - Mohammad Manthouri
Whale Optimization Algorithms based Fractional Order Fuzzy PID Controller for Depth of Anesthesia
Amirsaeid Safari - Kosar Safari - Mohammad Manthouri
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.2